Computed Tomography Solution for Automotive Components

A narrow x-ray beam is quickly spun around a patient’s body during a procedure known as “computed tomography,” or CT. This produces signals that are then analyzed by the machine’s computer to create cross-sectional images, or “slices,” of the patient’s body. These sections, which are known as tomographic pictures, can provide a clinician with more specific information than traditional x-rays. A three-dimensional (3D) image of the patient can be created once a number of successive slices have been collected by the machine’s computer. This makes it easier to identify the patient’s basic anatomy as well as any potential tumors or anomalies.

How does CT work?

A CT scanner employs a motorized x-ray source that spins around the circular opening of a donut-shaped frame called a gantry, in contrast to a traditional x-ray, which uses a stationary x-ray tube. In a CT scan, the patient is lying on a bed that gently rotates across the gantry as a narrow beam of x-rays is shot into the body by the x-ray tube. Special digital x-ray detectors, which are placed immediately across from the x-ray source, are used in CT scanners in place of film. The detectors catch the x-rays as they leave the patient and send them to a computer.

Each time the x-ray source completes one full rotation, the CT computer uses sophisticated mathematical techniques to construct a two-dimensional image slice of the patient. The thickness of the tissue represented in each image slice can vary depending on the CT machine used but usually ranges from 1-10 millimeters. When a full slice is completed, the image is stored and the motorized bed is moved forward incrementally into the gantry. The x-ray scanning process is then repeated to produce another image slice. This process continues until the desired number of slices is collected.

The computer can either display the image slices separately or stack them to create a 3D image of the patient that displays the skeleton, organs, tissues and any anomalies the doctor is hoping to spot. This approach has various benefits, including the ability to rotate the 3D image in space or to see slices one after the other, which makes it simpler to pinpoint the precise location of a potential problem.

When would I get a CT scan?

CT scans can be used to detect disease or damage in numerous bodily parts. As an illustration, CT has developed into a helpful screening tool for finding potential cancers or lesions in the abdomen. When various forms of cardiac illness or anomalies are detected, a CT scan of the heart may be prescribed. The skull can also be imaged using CT to look for wounds, tumors, and clots that could cause a stroke or bleeding, among other disorders. The presence of malignancies, pulmonary emboli (blood clots), extra fluid, and other diseases including emphysema or pneumonia can be detected by imaging the lungs. When imaging complicated bone fractures, extensively degraded joints, or bone malignancies, a CT scan is very helpful since it typically produces more detail than is achievable with a traditional x-ray.